Objective Bayesianism with predicate languages
نویسنده
چکیده
Objective Bayesian probability is often defined over rather simple domains, e.g., finite event spaces or propositional languages. This paper investigates the extension of objective Bayesianism to first-order logical languages. It is argued that the objective Bayesian should choose a probability function, from all those that satisfy constraints imposed by background knowledge, that is closest to a particular frequency-induced probability function which generalises the λ = 0 function of Carnap’s continuum of inductive methods.
منابع مشابه
Justifying Objective Bayesianism on Predicate Languages
Objective Bayesianism says that the strengths of one’s beliefs ought to be probabilities, calibrated to physical probabilities insofar as one has evidence of them, and otherwise sufficiently equivocal. These norms of belief are often explicated using the maximum entropy principle. In this paper we investigate the extent to which one can provide a unified justification of the objective Bayesian ...
متن کاملSprenger The Renegade Subjectivist : José Bernardo ’ s Reference Bayesianism
This article motivates and discusses José Bernardo’s attempt to reconcile the subjective Bayesian framework with a need for objective scientific inference, leading to a special kind of objective Bayesianism, namely reference Bayesianism. We elucidate principal ideas and foundational implications of Bernardo’s approach, with particular attention to the classical problem of testing a precise null...
متن کاملThe Renegade Subjectivist : José Bernardo ’ s Reference Bayesianism
This article motivates and discusses José Bernardo’s attempt to reconcile the subjective Bayesian framework with a need for objective scientific inference, leading to a special kind of objective Bayesianism, namely reference Bayesianism. We elucidate principal ideas and foundational implications of Bernardo’s approach, with particular attention to the classical problem of testing a precise null...
متن کاملBayesianism and Information
Bayesianism is a theory of inductive inference that makes use of the mathematical theory of probability. Bayesians usually hold that the relevant probabilities should be interpreted in terms of rational degrees of belief. This still leaves much scope for disagreement, since there is no consensus about what norms govern rational degrees of belief. In this chapter, we first provide an introductio...
متن کاملMotivating Objective Bayesianism: From Empirical Constraints to Objective Probabilities
Kyburg goes half-way towards objective Bayesianism. He accepts that frequencies constrain rational belief to an interval but stops short of isolating an optimal degree of belief within this interval. I examine the case for going the whole hog.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Synthese
دوره 163 شماره
صفحات -
تاریخ انتشار 2008